Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet.

نویسندگان

  • Tsechoe Dorji
  • Orjan Totland
  • Stein R Moe
  • Kelly A Hopping
  • Jianbin Pan
  • Julia A Klein
چکیده

Global climate change is predicted to have large impacts on the phenology and reproduction of alpine plants, which will have important implications for plant demography and community interactions, trophic dynamics, ecosystem energy balance, and human livelihoods. In this article we report results of a 3-year, fully factorial experimental study exploring how warming, snow addition, and their combination affect reproductive phenology, effort, and success of four alpine plant species belonging to three different life forms in a semiarid, alpine meadow ecosystem on the central Tibetan Plateau. Our results indicate that warming and snow addition change reproductive phenology and success, but responses are not uniform across species. Moreover, traits associated with resource acquisition, such as rooting depth and life history (early vs. late flowering), mediate plant phenology, and reproductive responses to changing climatic conditions. Specifically, we found that warming delayed the reproductive phenology and decreased number of inflorescences of Kobresia pygmaea C. B. Clarke, a shallow-rooted, early-flowering plant, which may be mainly constrained by upper-soil moisture availability. Because K. pygmaea is the dominant species in the alpine meadow ecosystem, these results may have important implications for ecosystem dynamics and for pastoralists and wildlife in the region.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Warming, plant phenology and the spatial dimension of trophic mismatch for large herbivores.

Temporal advancement of resource availability by warming in seasonal environments can reduce reproductive success of vertebrates if their own reproductive phenology does not also advance with warming. Indirect evidence from large-scale analyses suggests, however, that migratory vertebrates might compensate for this by tracking phenological variation across landscapes. Results from our two-year ...

متن کامل

Diminished Response of Arctic Plants to Warming over Time

The goal of this study is to determine if the response of arctic plants to warming is consistent across species, locations and time. This study examined the impact of experimental warming and natural temperature variation on plants at Barrow and Atqasuk, Alaska beginning in 1994. We considered observations of plant performance collected from 1994-2000 "short-term" and those from 2007-2012 "long...

متن کامل

Reproductive limits of a late-flowering high-mountain Mediterranean plant along an elevational climate gradient.

Mountain plants are particularly sensitive to climate warming because snowmelt timing exerts a direct control on their reproduction. Current warming is leading to earlier snowmelt dates and longer snow-free periods. Our hypothesis is that high-mountain Mediterranean plants are not able to take advantage of a lengthened snow-free period because this leads to longer drought that truncates the gro...

متن کامل

Effects of short-term grazing exclusion on plant phenology and reproductive succession in a Tibetan alpine meadow

Grazing exclusion (GE) has been widely considered as an effective avenue for restoring degraded grasslands throughout the world. GE, via modifying abiotic and biotic environments, inevitably affects phenological development. A five-year manipulative experiment was conducted in a Tibetan alpine meadow to examine the effects of GE on phenological processes and reproductive success. The study indi...

متن کامل

Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost

1. The response of northern tundra plant communities to warming temperatures is of critical concern because permafrost ecosystems play a key role in global carbon (C) storage, and climateinduced ecological shifts in the plant community will affect the transfer of carbon-dioxide between biological and atmospheric pools. 2. This study, which focuses on the response of tundra plant growth and phen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Global change biology

دوره 19 2  شماره 

صفحات  -

تاریخ انتشار 2013